
R esearch during the last three decades has dem-

 onstrated numerous advantages of dual-

 polarization radars. For example, polarimetric 

radars can improve rainfall estimation, better dis-

criminate meteorological and nonmeteorological 

echoes, and help identify and mitigate the contami-

nation of radar variables by nonweather scatterers. 

Polarimetric radars have also shown promise in 

classifying hydrometeors with different microphysi-

cal habits and retrieving raindrop size distributions 

(DSDs), both of which provide insight into storm de-

velopment and precipitation formation. A description 

of the general principles of weather radar polarimetry 

and its possible applications can be found in Doviak 

and Zrnic (1993), Bringi and Chandrasekar (2001), 

Zrnic and Ryzhkov (1999), Vivekanandan et al. 

(1999), and Straka et al.(2000), among others.

As part of the continuous modernization of the 

nationwide network of the Weather Surveillance 

Radars-1988 Doppler (WSR-88D), the U.S. National 

Weather Service (NWS) and other agencies have 

decided to add a polarimetric capability to existing 

operational radars. The concept was tested on the Na-

tional Severe Storms Laboratory (NSSL) research and 

development WSR-88D radar (hereafter referred to 

as the KOUN radar), to which polarimetric diversity 

was added in March 2002. The design of the KOUN 

radar is described in detail by Doviak et al. (2002). 

A main feature of the radar is that it simultaneously 

transmits and receives horizontally (H) and vertically 

(V) polarized waves. A commercial SIGMET RVP7 

processor is passively connected to the radar, thereby 

assuring that there is no effect on normal WSR-88D 

radar operations. In its simultaneous horizontal and 

vertical (SHV) transmission and reception mode, 

the following variables are available: radar ref lec-

tivity factor Z at horizontal polarization, Doppler 
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velocity V, spectral width σ
v
, differential reflectivity 

Z
DR

, differential phase Φ
DP

, and the magnitude of the 

cross-correlation coefficient ρ
hv

 between two copolar 

components of the radar signal.

In the past year, the NSSL has been conducting an 

operational demonstration of the polarimetric utility 

of the KOUN radar. Broadly, this demonstration proj-

ect, referred to as the Joint Polarization Experiment 

(JPOLE), has the following objectives:

• Evaluate the engineering design (SHV mode, 

compatibility with WSR-88D, quality of multipa-

rameter radar data).

• Evaluate the capability to classify meteorological 

and nonmeteorological scatterers such as hail/

rain, rain/snow, insects/birds, etc.

• Validate the quality of rainfall measurements us-

ing two gauge networks: Agricultural Research 

Service (ARS) and Mesonet.

• Deliver radar variables and products (results of 

classification and rainfall estimation) to the local 

NWS office for evaluation and feedback.

JPOLE must address three additional issues. 

First, although the SHV mode has many advantages 

over the alternate transmission/reception mode 

(Doviak et al. 2000), the effects on rainfall estima-

tion and hydrometeor classification (due to stronger 

coupling between two orthogonal components of 

the radar return) should be determined. It is also 

important to assess how well the detection of hail, 

identification of the bright band, and delineation 

between snow and rain can be made without the 

linear depolarization ratio—the variable that was 

historically the first polarimetric parameter utilized 

for such purposes.

A second issue is the scanning rate used for data 

collection. Most polarimetric data from previous 

research studies were collected with relatively slow 

antenna rotation rates (~1 rpm). This was dictated 

by the need to reduce and isolate statistical measure-

ment errors from those due to other physical factors. 

Routine Next Generation Weather Radar (NEXRAD) 

volume coverage patterns (VCP), however, require 

at least 3 times higher antenna rotation rates and, 

therefore, a smaller number of radar samples (or 

shorter dwell times). Therefore, the algorithms for 

polarimetric rainfall estimation and classification 

should be tested with similar VCPs.

Finally, JPOLE must demonstrate the compat-

ibility of the polarimetric WSR-88D prototype with 

existing operational WSR-88D radars (i.e., it is essen-

tial that existing capabilities of the WSR-88D radar 

are not compromised by the addition of polarization 

diversity). This requires comparing the quality of 

nonpolarimetric radar variables (radar reflectivity, 

mean Doppler velocity, and spectrum width) and 

products (rain accumulation, probability of hail, etc.) 

with those obtained from the reference operational 

radar. The operational KTLX WSR-88D radar, which 

is approximately 20 km northeast of the polarimetric 

KOUN radar (Fig. 1), was used as the nonpolarimetric 

reference radar for these comparisons.

We collected polarimetric KOUN radar data from 

April 2002 through July 2003. In total, 98 events were 

catalogued both chronologically and by type, and 

subsequently described within an online database at 

http://cimms.ou.edu/~heinsel/jpole/database.html 
and http://cimms.ou.edu/~heinsel/jpole/stormtype.
html, respectively. Fairly regular real-time delivery of 

polarimetric radar data and products to the Norman 

NWS Office began in the fall of 2002. This effort cul-

minated during the JPOLE 

intense observation pe-

riod (IOP) from 15 March 

2003 through 15 June 2003. 

During the IOP, emphasis 

was placed on providing 

uninterrupted data deliv-

ery to operational forecast-

ers, obtaining extensive 

forecaster feedback on the 

use of the polarimetric 

data in the warning deci-

sion process, and collecting 

high-quality verification 

datasets that could be used 

to assess the KOUN radar 

data and product quality.

FIG. 1. Instrumentation for rainfall estimation in Oklahoma. The Mesonet 
includes 115 gauges with an average gauge spacing of 30 km (Brock et al. 
1995); the Micronet consists of 42 gauges with an average gauge spacing of 5 
km. Both networks provide 5-min rain accumulation data.
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During JPOLE, data from the polarimetric NSSL 

Cimarron and conventional NWS KTLX, KINX, 

KVNX, and KFDR WSR-88D radars, as well as rain 

gauge data from the Oklahoma Climate Survey 

(OCS) Mesonet and ARS Micronet, were collected 

to verify the polarimetric WSR-88D analyses (Fig. 

1). Two-hail intercept vehicles and the South Dakota 

School of Mines and Technology storm-penetrating 

T-28 aircraft (as part of separate field project) were 

used for in situ validation results of hail detection and 

hydrometeor classification during the JPOLE IOP.

The objective of this paper is to give an overview 

of polarimetric algorithms for rainfall estimation 

and classification, to illustrate their application for 

selected events during JPOLE, and to provide a sum-

mary of the major results for the whole observational 

period.

POLARIMETRIC RAINFALL ESTIMATION. 
Improvement of quantitative precipitation estima-

tion (QPE) is one of the primary benefi ts provided 

by dual-polarization radars. Using multiparameter 

radar information instead of radar refl ectivity alone 

helps to significantly improve radar data quality, 

distinguish rain echoes from signals caused by other 

scatterers (snow, ground clutter, insects, birds, chaff , 

etc.), and reduce the impact of DSD variability on 

rainfall estimates. Two polarimetric variables are im-

portant for accurate rainfall estimation: diff erential 

refl ectivity, which is defi ned as a diff erence between 

refl ectivities at horizontal and vertical polarizations; 

and diff erential phase, which is a diff erence between 

the phases of the radar signals at orthogonal polariza-

tions. Diff erential refl ectivity Z
DR

 is a good measure 

of the median drop diameter, which should be taken 

into account for more accurate rain measurements. 

Among the indisputable advantages of polarimetric 

rainfall estimation based on specifi c diff erential phase 

K
DP

 is its immunity to radar miscalibration, attenua-

tion in precipitation, and partial blockage of the radar 

beam (Zrnic and Ryzhkov 1996).

Radar dataset. We have selected two large subsets 

of radar data for in-depth analysis. Th e ARS subset 

consists of 24 rain events with 50 h of observations, 

during which at least 2 mm of rain fell. Th is dataset 

contains 18 convective and 6 stratiform rain events 

and includes both “warm season” and “cold season” 

events. Cold-season stratiform rain with a relatively 

low bright band mostly occurred in October 2002. 

Th e Mesonet subset is comprised of 22 rain events 

and 83 h of observations for the cases observed from 

August 2002 to June 2003. One hundred and eight 

Oklahoma Mesonet gauges were used to validate 

the results of radar rain measurements at distances 

between 25 and 290 km from the radar.

The radar variables Z, Z
DR

, K
DP

, and ρ
hv

 were esti-

mated using a short dwell time (48 radar samples) in 

order to satisfy the NEXRAD requirement for a rapid 

antenna rotation rate (3 rpm) and 1° beam spacing.

Validation of rainfall algorithms using the ARS Micronet 
gauges. Th e standard WSR-88D R(Z) relation (Z = 

300 R1.4) and various polarimetric rainfall algorithms 

have been validated using the JPOLE dataset. Here 

we compare the performance of the conventional 

R(Z) relation and the best polarimetric algorithm 

R(Z, Z
DR

, K
DP

) (also called a synthetic algorithm) 

that utilizes three radar variables (see appendix A 

for more details).

First we examine the performance of the con-

ventional and polarimetric algorithms over the 

ARS Micronet area. The ARS gauges are between 50 

and 88 km from the KOUN radar. At these ranges, 

DSD variability, raindrop shape uncertainty, and 

the presence of hail are leading factors that affect 

the accuracy of rain retrievals. Ground clutter and 

brightband contamination are usually negligible at 

these distances from the radar.

We compare 1-h rain totals—both point and areal 

estimates—obtained from the radar and gauges. By 

point estimate we mean an hourly total averaged over 

a small (1–1.5 km) area centered on an individual 

gauge. Areal mean hourly total (or areal mean rain 

rate) is determined as a sum of hourly accumulations 

from all gauges that recorded rain divided by the 

number of such gauges.

To assess the quality of different polarimetric rain 

algorithms, we prefer to examine absolute differences 

between radar and gauge estimates (expressed in 

mm) rather than standard fractional errors, which 

are heavily weighted with small accumulations. 

Rainfall estimates are characterized by the bias B = 

<Δ>, standard deviation SD = <|Δ–B|2>½  , and the rms 

error rmse=<|Δ|2>½  , where Δ = T
R
 – T

G
 is a difference 

between radar and gauge hourly totals for any given 

radar–gauge pair, and brackets mean averaging over 

all such pairs.

An analysis of 24 rain events (50 h of rain) shows 

that the R(Z, K
DP

, Z
DR

) algorithm outperforms the 

conventional R(Z) method according to all five 

statistical criteria: it has the lowest bias, standard 

deviations, and rms errors for both point and areal 

rainfall estimates (Table 1). The optimal polarimetric 

algorithm has a very small overall bias and demon-

strates significant reduction of the rms errors (Fig. 2) 
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compared to the conventional rainfall estimator—1.7 

times for point measurements and 3.7 times for areal 

rainfall estimates.

Figure 3 shows the bias in areal rain rates estimated 

from radar using the R(Z) and R(Z, K
DP

, Z
DR

) relations 

versus the hours of observations ranked in chronological 

order. The two curves in Fig. 3 illustrate overall overesti-

mation/underestimation of rain with both algorithms for 

different seasons and rain regimes. It is obvious that the 

conventional algorithm tends to significantly overestimate 

rainfall associated with intense convection, and especially 

with hail. The suggested polarimetric method dramati-

cally reduces such overestimation. Both methods slightly 

underestimate rain for cold-season stratiform events with 

marginal improvement if the polarimetric algorithm is 

used (hours 10–30 from October to December 2002).

Of all Z–R relations, we found that Z = 527 R1.41 yields 

the smallest rms errors for the point and areal estimates 

of rain (4.05 and 2.59 mm, respectively) for the JPOLE 

dataset. If the polarimetric algorithm is compared to this 

“optimal” R(Z), then the reduction in the rms errors are 

1.3 and 2.4 for the point and areal estimates, correspond-

ingly. The optimal R(Z) relation produces a smaller posi-

tive bias for warm season rain events and a significantly 

larger negative bias for cold season events than does the 

standard WSR-88D relation. In other words, application 

of the optimal R(Z) relation shifts the red curve in Fig. 

3 downward without changing its shape. There is not a 

single R(Z) relation that matches well the observed rain 

regimes, whereas the polarimetric algorithm automati-

cally accounts for the differences between various types 

of rain.

Evidence of different rain regimes. JPOLE encountered a 

large variety of rain regimes characterized by diff erent 

types of DSD. Th e Z–Z
DR

 scattergrams give insight into 

microphysical properties of 

rain and the type of DSDs. For 

a given Z, very large values of 

Z
DR

 generally indicate the DSDs 

are skewed toward bigger drops, 

whereas very small Z
DR

 means 

a dominance of small drops. A 

slope of the Z–Z
DR

 scattergram 

and its spread are good predic-

tors of rainfall overestimation/

underestimation by the R(Z) 

relation (Fig. 4).

The rain event on 8 Septem-

ber 2002 (Fig. 4, left side) was 

associated with a tropical air 

mass [often characterized by the 

dominance of small drops in the 

raindrop spectrum (Ryzhkov 

and Zrnic 1996)], very “f lat” 

Z–Z
DR

 scattergrams, and values 

of Z
DR

 barely exceeding 1 dB 

even for reflectivities reaching 

50 dBZ. Hence, R(Z) heavily 

underestimates rainfall. In the 

second example, the storm on 

14 May 2003 (Fig. 4, right side) 

Algorithms Point Areal

Bias (mm) SD (mm) RMSE (mm) SD (mm h–1) RMSE (mm h–1)

R(Z) 1.22 5.16 5.30 3.74 4.02

R(Z, KDP, ZDR) –0.01 3.06 3.06 1.09 1.09

TABLE 1. Mean biases, standard deviations (SD), and rms errors of the radar estimates of 1-h rain 
totals (in mm) and areal mean rain rates (in mm h–1) for the R(Z) and R(Z, KDP, ZDR) algorithms.

FIG. 2. (top) One-hour accumulations and (bottom) mean areal rain rates 
from gauges vs their estimates from the R(Z) and R(Z, KDP, ZDR) algorithms 
(24 rain events, 50 h of observations).
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produced intense rainfall (near–flash flood criteria) in the 

ARS Micronet area and hail exceeding 5 in. in diameter. 

Some of the Micronet gauges recorded rain rates of about 

200 mm h–1, and at least three gauges registered hourly 

rain totals exceeding 2 in. The sharp decrease of Z
DR

 for 

Z > 60 dBZ is a clear indication of hail. Hail cores are 

typically surrounded by regions of very high Z
DR

 that can 

be attributed to melting hail or giant raindrops with ice 

cores inside. The contribution of such areas to the rain 

total is usually much larger than the contribution from 

“pure” hail-contaminated regions where high Z is coupled 

with low Z
DR

.

The Z–Z
DR

 scattergrams for rain mixed with hail are 

extremely broad, that is, very high values of Z
DR

 are ob-

served in a wide range of reflectivities, including very low 

ones. This explains why thresholding of Z at a certain level 

(53 dBZ for the WSR-88D radars) only partially mitigates 

the impact of hail on the quality of rain measurement. We 

still observe a substantial overesti-

mation of rain after the 53-dBZ 

threshold is applied to the radar 

ref lectivity data (Fig. 4, right 

side). The polarimetric method 

significantly improves rain es-

timates in both cases.

Overall, the most significant 

improvement is achieved in 

areal rainfall estimation and in 

measurements of heavy precipi-

tation (often mixed with hail). 

These advantages have impor-

tant practical implications for 

a) river flash-flooding forecasts 

and management that require 

reliable measurement of areal 

rain accumulations regardless 

of rain intensity, and b) urban 

f lash-f looding forecasts that 

require the accurate estimation 

of heavy rain at a high spatial 

resolution.

The quality of rainfall estimates as 
a function of range. Th e NWS re-

quires that rainfall be estimated 

FIG. 3. The bias in areal rain rates estimated from radar 
using the R(Z) and R(Z, KDP, ZDR) algorithms vs the hour 
of observations ranked in chronological order.

FIG. 4. The Z–ZDR scattergrams 
and hourly ARS gauge totals 
vs their estimates from the 
R(Z) and R(Z, KDP, ZDR) algo-
rithms in the cases of (left) 
tropical rain and (right) rain 
mixed with hail.
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up to 230 km in range from a radar. While some 

studies discuss the quality of conventional radar rain 

estimates at large distances (e.g., Smith et al. 1996; Seo 

et al. 2000), the performance of polarimetric methods 

at distances greater than 100 km has not been well 

investigated. With few exceptions, the majority of the 

dual-polarization S-band radar–gauge comparisons 

have been made for warm-season precipitation and 

at distances of less than 100 km. It was not clear if 

the advantages of dual-polarization radar for rain 

measurements hold at larger distances from the radar. 

Th erefore, we used Oklahoma Mesonet rain gauges 

to validate conventional and polarimetric algorithms 

for rainfall estimation in a broad range of distances 

from the radar.

The presence or absence of the bright band af-

fects performance of all radar algorithms at large 

distances. Separate statistics were obtained for the 

cold season events, for which the bright band played 

a significant role, and the warm season events, which 

were not substantially affected by the bright band. 

The cold season subset contains 29 h of observation 

from September through November 2002. Although 

these events might contain embedded convection, 

they are best classified as widespread stratiform 

precipitation and nocturnal events associated with 

mesoscale convective systems. The warm season 

subset includes 54 h of observation from late April to 

mid-August 2002–03. These rain events are mostly 

ordinary convective lines with occasional supercells; 

some have significant portions of stratiform rain. 

Substantial hail was reported for several warm-season 

storms.

The mean biases and rms errors of 1-h rain totals 

were computed in the range interval of 50–225 km 

and displayed as functions of range (Fig. 5) separately 

for cold- and warm- season events. Intervals of 50 km 

in range, centered at 25-km increments beginning 

with a range of 50 km, have been selected for this 

analysis. There are a total of 2088 hourly comparisons 

for the 25–250-km interval representing data from 9 

rain events.

At relatively close distances (less than 130 km 

from the radar) where brightband contamination is 

negligible, the quality of radar rainfall estimates is 

mostly determined by DSD variations and the pos-

sible presence of hail. As our analysis shows, these 

two problems are best addressed by the synthetic R(Z, 

K
DP

, Z
DR

) algorithm.

In the range interval of 130–200 km, the bright 

band becomes a leading factor affecting the perfor-

mance of all algorithms during the cold season, when 

FIG. 5. Mean biases and rms errors of the hourly rain totals estimated from different algorithms as 
functions of range for (left) cold-season and (right) warm-season cases.

814 JUNE 2005|



rain is predominantly stratiform and the melting 

level is quite low. At these distances, the synthetic 

algorithm is no longer superior because Z and Z
DR

 

are substantially affected by melting hydrometeors. 

Surprisingly, the R(K
DP

) algorithm, which solely 

relies on K
DP

 (see appendix A), is more immune to 

the brightband contamination than the others. It 

performs best of all, both in terms of bias and rms 

error. The situation is very different in the warm 

season when rain is mostly associated with strong 

localized convection—rain fields are very nonuni-

form, and brightband contamination is not a key 

factor. Although rain estimates from the R(Z, K
DP

, 

Z
DR

) and R(K
DP

) algorithms are still the best in terms 

of the rms error, the corresponding biases become 

increasingly negative. Possible aliasing of differential 

phase and nonuniform beam-filling effects are likely 

causes of such a progressive negative bias. Beyond 

200 km, all algorithms perform poorly because of 

beam-overshooting precipitation, beam broadening, 

and loss of sensitivity.

In summary, the polarimetric rainfall algorithm, 

which is based on the combined use of Z, Z
DR

, and 

K
DP

, clearly outperforms a conventional R(Z) relation 

in terms of both bias and the rms error. At distances 

less than 100 km from the radar, the rms error of 

the 1-h total estimate is reduced by a factor of 1.7 for 

point measurements and a factor of 3.7 for areal rain-

fall estimates. At longer distances, the polarimetric 

method also provides improved rainfall estimation, 

although to a lesser degree. The choice between R(Z, 

K
DP

, Z
DR

), R(K
DP

), or an other polarimetric relation 

depends on the presence or absence of the bright 

band, which can be identified using a polarimetric 

classification procedure.

HYDROMETEOR CLASSIFICATION. General 
principles of classification. One of the important advan-

tages of polarimetric weather radars is their ability to 

discriminate between diff erent types of hydrometeor 

and nonhydrometeor scatterers. Our classifi cation 

algorithm is based on the principles of fuzzy logic 

(Vivekanandan et al. 1999; Zrnic and Ryzhkov 1999; 

Straka et al. 2000; Liu and Chandrasekar 2000; Zrnic 

et al. 2001).

Five radar variables have been used for the au-

tomatic classification reported herein. These are 

1) radar reflectivity Z, 2) differential reflectivity Z
DR

, 

3) cross-correlation coefficient ρ
hv

, between hori-

zontally and vertically polarized components of the 

radar return, 4) a texture parameter SD(Z) of the Z 

field, and 5) a texture parameter SD(Φ
DP

) of the field 

of differential phase Φ
DP

. The two latter variables 

are especially efficient for discrimination between 

meteorological and nonmeteorological radar echoes. 

The parameters SD(Z) and SD(Φ
DP

) characterize the 

depth of small-scale fluctuations of Z and Φ
DP

 along 

the radar ray.1

The classification procedure can be customized 

according to the user’s needs. Depending on the 

primary task, different sets of radar variables, dif-

ferent classes, and different weights can be used. For 

example, the algorithm can be optimized either for 

discrimination between meteorological and nonme-

teorological scatterers (meteo versus nonmeteo) or for 

distinguishing different categories of meteorological 

echo (e.g., rain versus hail or snow). In JPOLE, we 

used three different (in substance and complexity) 

versions of the polarimetric classification algorithm. 

A list of classes that are identified with the three 

versions of the fuzzy logic classifier is presented in 

Table 2.

TABLE 2. List of radar echo types identified with three versions of the fuzzy logic classifier.

Version 1:
Meteo–nonmeteo

Version 2:
Warm season

Version 3:
Cold season

Ground clutter/AP: AP Ground clutter/AP: AP Ground clutter/AP: AP

Biological scatterers: BS Biological scatterers: BS Biological scatterers: BS

Rain: RA Big drops: BD Dry aggregated snow: DS

Light rain: LR Wet snow: WS

Moderate rain: MR Stratiform rain: SR

Heavy rain: HR Convective rain: CR

Rain/hail: HA Rain/hail: RH

1 To obtain SD(Z), we average Z data (sampled every 0.267 km) 

along the radial using a 1-km running average and subtract 

the smoothed estimates of Z from their original values. 

A similar procedure is used for computing the parameter 

SD(Φ
DP

), but with a 2-times-wider averaging window.
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All three versions were designed to filter out radar 

echoes from nonmeteorological scatterers (ground 

clutter, birds, insects, etc.)—an important component 

of data quality improvement and one of the primary 

advantages of a dual-polarization radar. Version 2 was 

primarily utilized for warm-season weather events 

during JPOLE. A category “big drops” describes a 

raindrop spectrum that is characterized by a rela-

tively substantial number of larger drops and fewer 

small ones than was encountered in most DSDs. This 

skewed type of DSD, which is commonly observed 

in the inflow regions of rapidly developing convec-

tion, has an important prognostic value for weather 

forecasters. Version 3 includes two categories of 

frozen particles (dry aggregated snow and wet snow) 

among others, thus, it was a preferred classifier for 

cold-season events.

Discrimination between meteorological and nonme-
teorological scatterers. Th e quality of discrimination 

between meteorological and nonmeteorological scat-

terers using version 1 of the classifi cation algorithm 

is illustrated in Fig. 6. Th e radar refl ectivity image 

gives limited clues for identifi cation. Th e classifi cation 

algorithm, however, identifi es extended regions of 

anomalous propagation (AP) embedded in precipita-

tion. Th e AP-contaminated areas in Fig. 6 are marked 

by slightly negative values of Z
DR

 and a ρ
hv

 lower than 

what is typically observed in rain. Regions classifi ed 

as  biological scatterers  are characterized by high 

Z
DR

 and low ρ
hv

.

Although the use of ρ
hv

 alone yields very good 

separation of meteorological and biological scatter-

ers, it is not always sufficient to distinguish between 

weather echoes and ground clutter/AP. The texture 

FIG. 6. Composite plot of Z, ZDR, ρhv, and results of classification at E1 = 0.5º at 0734 UTC 24 Aug 
2002. Here, RA stands for rain, BS for biological scatterers, and AP for ground clutter/anomalous 
propagation.
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parameters SD(Z), and especially SD(Φ
DP

), might also 

be helpful for discrimination between weather and 

ground echoes (Schuur et al. 2003). Although none 

of the five radar variables enables perfect delineation 

among the three classes, their combination in a fuzzy 

logic approach is very efficient for classification.

The ability of the algorithm to classify meteoro-

logical and nonmeteorological scatterers is quantified 

as follows. We selected eight cases that exhibited 

extensive areas of radar echo caused by either AP or 

biological scatterers, and estimated relative propor-

tions of correctly classified and misclassified echoes. 

We found that the number of 2 km x 2 km pixels (used 

as a grid interval in our analysis) identified as “non-

meteo” in pure rain areas (e.g., in rain at elevation 1.5° 

without AP echo) was usually less than 1% of the total 

number of pixels for which the signal-to-noise ratio 

(SNR) exceeds 10 dB. A similar proportion of misclas-

sification (less than 1%) was found in the opposite 

situation—“meteo” pixels in the AP areas—provided 

that SNR is again higher than 10 dB. The quality of 

classification deteriorates with decreasing SNR (up 

to 5% of misclassified pixels in several cases if SNR 

> 5 dB). This deterioration is attributed to the fact that 

the key polarimetric variables, Z
DR

 and ρ
hv

, are biased 

by noise and, in these data, can be reliably corrected 

if SNR > 5–10 dB.

Neither version of the classification algorithm 

utilized in JPOLE provided discrimination between 

insects and birds. Nevertheless, recent experimental 

studies (Zhang et al. 2004) demonstrate the potential 

capability of the polarimetric radar to distinguish 

between insects and birds and reveal different di-

urnal cycles for radar echoes associated with either 

type of these biological scatterers. Birds are usually 

characterized by larger values of differential phase 

upon scattering and a lower differential reflectivity 

than insects (Zrnic and Ryzhkov 1998; Zhang et al. 

2004).

Another type of nonmeteorological radar echo in 

the atmosphere that can be reliably detected by the 

polarimetric radar is chaff released by the military. 

An interesting case of chaff detection during JPOLE 

is reported by Zrnic and Ryzhkov (2004). The chaff 

signature is characterized by an anomalously low 

cross-correlation coefficient (0.2–0.5) and high values 

of differential reflectivity (up to 6 dB).

Detection of hail. Th e current WSR-88D hail detec-

tion algorithm (HDA) estimates hail and severe hail 

probability, as well as maximum hail size, on the basis 

of storm structure and environmental factors that 

are diffi  cult to quantify (Witt et al. 1998). Because 

the estimates characterize a whole storm cell, HDA 

does not specify the actual location of the hail. In 

contrast, the polarimetric hydrometeor classifi cation 

algorithm (HCA) determines precise regions of hail 

within a storm cell by capitalizing on the diff erence 

between polarization properties of hydrometeors 

with diff erent microphysical habits in any given radar 

resolution volume.

In accordance with the HCA, hail is identified 

by high values of Z combined with low Z
DR

 and ρ
hv

 

(Aydin et al. 1986; Balakrishnan and Zrnic 1990; 

Smyth et al. 1999; and others). In order to distinguish 

between hail and ground clutter/AP, which might 

have a very similar Z, Z
DR

, and ρ
hv

, we also use the 

texture parameters [SD(Z) and SD(Φ
DP

)] and Doppler 

velocity V. Ground clutter/AP is characterized by low 

absolute V and high values of the texture variables. 

Figure 7 shows HCA results at the 0.5° elevation for 

the 14 May 2003 supercell that produced hail with a 

diameter of more than 5 in. (i.e., 12.7 cm). The giant 

hail that fell from the storm cell at a location of ap-

proximately X = –10 km and Y = –85 km is associated 

with a Z that exceeded 70 dBZ, a slightly negative 

Z
DR

, and a ρ
hv

 as low as 0.8. The area classified as big 

drops in the updraft region at the southern edge of 

the storm is characterized by a Z
DR

 exceeding 3 dB 

and low-to-moderate Z.

During JPOLE, KOUN data were collected from 

18 events that produced polarimetric signatures 

indicative of hail. Storm-intercept vehicles collected 

ground-truth data within 150 km of the radar for 

five of these events: an isolated low-precipitation (LP) 

supercell storm on 1 May, a classic supercell storm on 

19 May, lines of convective storm cells on 14 May and 

10 June, and two linearly aligned LP supercell storms 

on 11 June. To validate hail detection by the conven-

tional (HDA) and polarimetric (HCA) algorithms, 

the ground truth data were compared with HDA and 

HCA output. HDA was run using data collected by 

KTLX, the nearest operational WSR-88D radar (20 

km northeast of KOUN). For HDA, probabilities of 

hail 60% or higher were considered as indicative of 

hail falling at the ground. Because KTLX data were 

unavailable for the 11 June event, the evaluation 

pertains to the other four events only. HCA was run 

using data collected by the polarimetric KOUN radar. 

Hail classification at the 0.5° elevation was considered 

to be indicative of hail falling at the ground.

Ground-truth data included in this validation 

(47 reports) showed hail sizes from about 0.5 to 

4.45 cm, and met a set of temporal and spatial crite-

ria. Each hail report had to occur within ± 6 min of 

available radar data (both KOUN and KTLX) and 
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be located within an acceptable distance of either 

the 40-dBZ or higher reflectivity contour or a region 

classified as hail. This distance, or radius of influence, 

varied from 3.2 to 5 km, depending on the speed of 

storm movement.

Using these criteria, a 2 x 2 contingency table was 

created for all days combined and used to compute the 

following measures: probability of detection (POD), 

probability of false detection (POFD), false alarm 

rate (FAR), critical success index (CSI), and Heidke 

skill score (HSS; see appendix B for definitions). For 

the four cases in this study, HCA outperforms HDA 

in terms of overall accuracy and skill (Table 3). The 

most striking performance improvements for HCA, 

relative to HDA, are a 49% increase in HSS and a 

33% decrease in POFD. This substantial increase in 

HSS means that HCA classifies hail more skillfully 

than HDA, with respect to a random classification. 

The substantial decrease in POFD means that HCA 

is less likely to attain a false alarm than HDA when 

hail is not observed. Other noteworthy performance 

improvements in HCA, relative to HDA, include a 

33% increase in CSI and a 28% decrease in FAR. More 

detailed description of the results of this validation 

study can be found in Heinselman and Ryzhkov 

(2004).

Rain–snow delineation. Polarimetric properties of wet 

(melting) snow and snow crystals are very diff erent 

from the ones in rain. Hence, these two snow catego-

ries are easily distinguishable from rain. However, 

discrimination between stratiform rain and dry ag-

FIG. 7. Composite plot of Z, ZDR, ρhv, and results of classification at E1 = 0.5º at 0834 UTC 14 May 2003. 
AP stands for ground clutter/anomalous propagation, BS for biological scatterers, BD for big drops, 
LR for light rain, MR for moderate rain, HR for heavy rain, and HA for rain/hail mixture.
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gregated snow is a major challenge. Both classes are 

characterized by relatively low Z and Z
DR

, combined 

with high ρ
hv

 (Ryzhkov and Zrnic 1998). Further-

more, there is no distinction in terms of the texture 

of the Z and Φ
DP

 fi elds.

Figure 8 illustrates a scatterplot of Z versus Z
DR

 

obtained from measurements with the KOUN radar 

for three different types of snow. Dry aggregated snow 

was observed on 6 February 2003 between 1500 and 

1600 UTC over the entire state of Oklahoma. Seven 

hours later, dry aggregated snow changed to more 

crystallized snow in the very cold air northwest of 

the radar. It was characterized by much higher Z
DR

 

and lower Z. Heavy convective snowfall occurred 

on 24 February 2003 in southern Oklahoma. Radar 

reflectivities over 50 dBZ are unusually high for snow 

in the latter case, but corresponding values of Z
DR

 are 

relatively low when compared to the ones typically 

observed at the bottom of the bright band. It is evident 

that data from rain and snow are heavily overlapped 

in the Z–Z
DR

 plane for reflectivities between 20 and 

40 dBZ. There is no clear distinction between these 

two classes in K
DP

 and ρ
hv

 as well. A clue for successful 

discrimination between these classes lies in the fact 

that stratiform rain and aggregated snow are usually 

separated by the melting layer (or bright band), which 

has very pronounced polarimetric signatures and can 

be easily detected. Therefore, rain/snow delineation 

is contingent upon the reliable identification of the 

melting layer.

In the current version of the classification algorithm, 

we detect the bottom of the melting layer by a sharp 

drop of the cross-correlation coefficient located slightly 

below local maxima in Z and Z
DR

 along the radial at the 

elevations between 4° and 9° in the direction away from 

the radar (Giangrande and Ryzhkov 2004). After the 

rain/snow delineation is made, only two classes, wet 

and dry snow, are distinguished at the snow altitudes/

ranges. Correspondingly, no snow is allowed to occur in 

the rain region, that is, below the bright band (Ryzhkov 

and Zrnic 2003; Giangrande and Ryzhkov 2004).

An example of rain/snow transition for the 

4 December 2002 freezing rain event is shown in 

Figs. 9 and 10. Brightband signatures are well pro-

nounced in all three radar variables, Z, Z
DR

, and ρ
hv

, 

in the northern direction (Fig. 9). The area identified 

as rain has a very asymmetric form with respect to the 

radar (Fig. 10, bottom panel). The height of the melt-

ing level in the northwest sector is about 3 times lower 

than in the southwest sector of the radar coverage 

area. This signifies the passage of a cold front from the 

northwest. Note that the cross-correlation coefficient 

resumes its high values in dry snow above/beyond the 

bright band. Rain in the northwest sector (X between 

–60 and 0 km and Y between 0 and 60 km) was associ-

ated with subfreezing surface temperatures (Fig. 10) 

that resulted in raindrops freezing upon impact on 

the ground. This freezing rain caused hazardous road 

conditions and significant property damage in the 

Oklahoma City metropolitan area.

The height of the melting layer in the northern sec-

tor changes gradually because of the passage of a cold 

front (Fig. 10). Although surface temperatures did not 

change much during the 9-h period (except the por-

tions of the north and northwest sectors far from the 

radar), the melting layer descended significantly to 

TABLE 3. Accuracy and skill measures of polarimetric (HCA) and conventional (HDA) algorithms 
over four hail events (47 reports), including probability of detection (POD), probability of false de-
tection (POFD), false alarm rate (FAR), critical success index (CSI), and Heidke Skill Score (HSS). 
Accuracy measures range from 0% to 100%, whereas skill measures range from 0 to 1. Probabilities 
are rounded to the nearest integer.

Algorithm POD POFD FAR CSI HSS

HCA 100 25 11 0.89 0.80

HDA 88 58 39 0.56 0.31

FIG. 8. The Z–ZDR scatterplots for different types of 
snow. Two curves confine the area where the ma-
jority of the cold-season rain Z–ZDR pairs are usually 
observed.
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the north of the radar. This horizontal nonuniformity 

associated with the frontal boundary aloft is almost 

FIG. 9. Composite plot of Z, ZDR, ρhv, at E1 = 0.5º at 0302 
UTC 4 Dec 2002.

FIG. 10. Evolution of rain/snow boundary for the freez-
ing rain event at the lowest radar scan (E1 = 0.5º). AP 
stands for ground clutter/anomalous propagation, BS 
for biological scatterers, DS for dry snow, WS for wet 
snow, SR for stratiform rain, CR for convective rain, 
and RH for rain/hail mixture. Overlaid numbers indi-
cate surface temperatures (ºC).

impossible to capture with operational soundings. 

Practical implications of the use of radar polarimetric 

information in winter storms by NWS forecasters 

during JPOLE are discussed by Scharfenberg and 

Maxwell (2003), Miller and Scharfenberg (2003), and 

Scharfenberg and Lakshmanan (2004).

Tornado detection. Previous research with the NSSL 

Cimarron radar (Ryzhkov et al. 2002) led to the dis-

covery of a polarimetric tornado signature associated 

with the Chickasha tornado (qualifi ed as F3 on the 

Fujita scale) on 3 May 1999. Th e signature at the tip of 

the hook echo of that storm was characterized by Z
DR
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close to 0 dB and anomalously low ρ
hv

 (less than 0.5). 

Ryzhkov et al. (2002) concluded that the signature is 

attributed to randomly oriented nonmeteorological 

scatterers with irregular shapes and high refractive 

indexes (i.e., tornado debris).

As part of JPOLE, considerable KOUN data were 

acquired in tornadic storms. In particular, several 

damaging tornadoes occurred near the KOUN radar 

in May 2003. Most notable were the afternoons and 

evenings of 8 and 9 May when violent F4 and F3 tor-

nadoes struck the Oklahoma City metropolitan area. 

In addition, several weaker tornadoes were observed 

during 6 days in April and May 2003.

Figure 11 shows a combined plot of Z, Z
DR

, and 

ρ
hv

 observed with the KOUN WSR-88D radar at the 

elevation of 1.5° at 2229 UTC (1729 CT) 8 May 2003 

when the F4 tornado was reported. The tornado 

touchdown signature at the very tip of the hook is 

marked with Z
DR

 close to 0 dB and ρ
hv

 < 0.5 (red ar-

rows). A very similar signature was identified for the 

F3 tornado on 9 May 2003. In both cases, the location 

of the tornadic debris signature was consistent with 

damage paths obtained from a ground survey.

Examination of these three significant tornadic 

storms by Schuur et al. (2004; including the one on 

3 May 1999) reveals a repetitive polarimetric tornado 

signature for strong tornadoes (F3 or higher on the 

Fujita scale). A cursory analysis of other tornadic 

storms indicates that the majority of the weak torna-

does did not produce definable signatures. One pos-

sible reason is that wind speeds in weak tornadoes are 

insufficient to significantly damage structures and 

loft debris. Another possible reason is that some of the 

weaker tornadoes may be too short lived; therefore, a 

debris signature might be missed because of coarse 

temporal sampling.

Based on these results, we believe that polarization 

measurements provide useful complementary infor-

mation that can be used with the Doppler variables 

for mesocyclone and tornado detection. Doppler 

measurements require good spatial resolution to 

resolve the small tornadic vortex signature, whereas 

identification of polarimetric signatures may be ac-

complished with a coarser resolution. Moreover, these 

signatures are isotropic in nature, similar to Doppler 

velocity signatures of vortices, that is, they do not 

depend on a viewing angle.

In cases where traditional Doppler tornado-warn-

ing signatures are absent or overlooked by forecasters, 

the polarization tornado signature might be very valu-

able in preventing what otherwise might have been 

a missed warning. This signature might also be very 

helpful in issuing accurate severe weather–warning 

FIG. 11. Composite plot of Z, ZDR, ρhv, for the Moore/
Southeast Oklahoma City tornado on 8 May 2003 
(2228 UTC, E1 = 1.5º). The tornado signature in ZDR and 
ρhv is at the tip of the hook echo (X = 9 km, Y = 18 km).
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updates to pinpoint the current tornado location and 

confirm the occurrence of damage (based on debris). 

Additional data analysis is required to examine the 

evolution of the 3D pattern of polarimetric variables 

prior to tornado touchdown and to possibly iden-

tify features that might serve as tornado precursors 

(Ryzhkov et al. 2005).

SUMMARY. The Joint Polarization Experiment 

(JPOLE) was designed to test the practicality and 

utility of a polarimetric WSR-88D radar. Highly suc-

cessful data collection during JPOLE has provided a 

large dataset that is used to demonstrate the advan-

tages of dual-polarization radar. It has demonstrated 

potential for signifi cant improvement in areal rainfall 

estimation and measurements of heavy precipitation. 

Also, the unique classifi cation capability based on 

polarimetric data has been confi rmed to identify non-

meteorological echoes (ground clutter/AP, insects, 

birds, and chaff ) and improve hail detection.

Analysis of stratiform rain events and winter 

storms indicates that the operational polarimetric 

radar can be efficiently used to detect the bright band 

and delineate rain and snow. Discrimination between 

rain and snow at the lowest radar scan is necessary 

to correctly estimate amounts of precipitation (liquid 

or frozen). Combined use of polarimetric data and 

surface temperatures is promising for the identifica-

tion of freezing rain.

Validation of the polarimetric KOUN radar 

rainfall estimation and echo classification during 

JPOLE yielded very positive results, confirming the 

high quality of the polarimetric radar data and the 

viability of the simultaneous transmission/reception 

scheme. Although linear depolarization ratio (LDR), 

a traditional polarimetric variable, was not measured 

in the SHV mode, it appears that the absence of LDR 

does not compromise the quality of hydrometeor 

classification.
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APPENDIX A: RADAR RAINFALL RELATIONS. As a basic conventional algorithm for radar rainfall 

estimation, we use the standard NEXRAD R(Z) relation

 R(Z) = 1.70 10–2Z0.714, (A1)

where Z is expressed in mm6 m–3 and R in mm h–1. Values of Z are limited to a maximum of 53 dBZ to miti-

gate hail contamination.

We have tested 19 different polarimetric algorithms, including the most recent R(K
DP

), R(Z, Z
DR

), and 

R(K
DP

,Z
DR

) S-band power-law relations found in literature and algorithms that we derived using multiyear 

statistics of DSD measurement in central Oklahoma (with different assumptions about raindrop shape–size 

dependencies). A full list of these algorithms is presented by Ryzhkov et al. (2003a).

Combining the merits of different algorithms for various rain intensities, we developed a “synthetic” 

algorithm R(Z, K
DP

, Z
DR

) that uses different combinations of radar variables depending on the rain rate 

estimated with the conventional R(Z) relation. The following is a description of the proposed algorithm 

(Ryzhkov et al. 2003a,b):

If R(Z) < 6 mm h–1, then

 R = R(Z)/(0.4+5.0 |Z
dr

 – 1|1.3); (A2)

if 6 < R(Z) < 50 mm h–1, then

 R = R(K
DP

)/(0.4+3.5 |Z
dr

 – 1|1.7); (A3)

if R(Z) > 50 mm h–1, then R = R(K
DP

), where

 R(K
DP

) = 44.0 |K
DP

|0.822 sign(K
DP

). (A4)
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In (A2)–(A4), Z
dr

 is diff erential refl ectivity expressed in linear units [Z
DR

(dB) = 10 log (Z
dr

)], and K
DP

 is in 

deg km–1.

The R(Z, K
DP

, Z
DR

) algorithm is structured in such a way that the combination of K
DP

 and Z
DR

 is used 

for estimation of about half of all rainfall in Oklahoma (according to the DSD statistics). It is known from 

simulations that, compared to the R(Z), R(K
DP

), and R(Z, Z
DR

) relations, the R(K
DP

,Z
DR

) algorithm is least 

affected by DSD variations and uncertainties in raindrop shapes and canting angles. At lower rain rates 

(< 6 mm h–1), the combination of K
DP

 and Z
DR

 is less efficient because K
DP

 becomes too noisy, therefore, Z 

(instead of K
DP

) should be used jointly with Z
DR

. For very high rain rates (> 50 mm h–1), both Z
DR

 and Z are 

very likely contaminated with hail, and the synthetic algorithm relies exclusively on K
DP

. Another advantage 

of such an approach is that reflectivity calibration is required only for light rain (with intensity less than 6 

mm h–1), which accounts for about 32% of the annual rain in Oklahoma according to multiyear statistics of 

disdrometer measurements.

APPENDIX B: ACCURACY AND SKILL SCORES. Th e 2 x 2 contingency tables were constructed 

by comparing algorithm detections to ground truth, where a is a hit, b is a false alarm, c is a miss, and d is a 

correct null. For each case, and all cases combined, we examined three accuracy measures, including prob-

ability of detection (POD), where

(B1)

probability of false detection (POFD), where

(B2)

(B3)

and critical success index (CSI), where

(B4)

Each of these measures ranges from 0 to 1, though POD and POFD are typically expressed in terms of 

percentages. A perfect forecast would have a POD of 100%, a POFD of 0%, and a CSI of 1. Additionally, we 

examined the Heidke skill score (HSS),

(B5)
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